About 42,600 results
Open links in new tab
  1. XGBoost 文档 — xgboost 3.1.0 文档 - XGBoost 文档

    XGBoost 提供了一种并行树提升(也称为 GBDT,GBM)方法,可以快速准确地解决许多数据科学问题。 相同的代码可以在主要的分布式环境(Hadoop、SGE、MPI)上运行,并且可以解 …

    Missing:
    • documentation
    Must include:
  2. GitHub - dmlc/xgboost: Scalable, Portable and Distributed …

    XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting …

  3. Package 'xgboost' reference manual - cran.dev

    When it comes to serializing XGBoost models, it's possible to use R serializers such as save () or saveRDS () to serialize an XGBoost model object, but XGBoost also provides its own …

  4. XGBoost

    Multiple Languages Supports multiple languages including C++, Python, R, Java, Scala, Julia.

    Missing:
    • documentation
    Must include:
  5. XGBoost Parameters — xgboost 0.90 documentation

    Before running XGBoost, we must set three types of parameters: general parameters, booster parameters and task parameters. General parameters relate to which booster we are using to …

  6. AiLake - v0.7.0-beta

    XGBoost 中文文档 XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。 它在 Gradient Boosting 框架下实现机器学习算法。 XGBoost提供并行树提升(也称 …

    Missing:
    • documentation
    Must include:
  7. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed …

  8. XGBoost - Wikipedia

    XGBoost[2] (eXtreme Gradient Boosting) is an open-source software library which provides a regularizing gradient boosting framework for C++, Java, Python, [3] R, [4] Julia, [5] Perl, [6] …

  9. XGBoost Documentationxgboost 0.4 documentation

    The goal of this library is to push the extreme of the computation limits of machines to provide a scalable, portable and accurate for large scale tree boosting. This document is hosted at …

  10. XGBoost 文档 — xgboost 3.0.2 文档 - XGBoost 文档

    XGBoost 提供了一种并行树增强(也称为 GBDT、GBM)方法,能够快速准确地解决许多数据科学问题。 相同的代码可以在主要分布式环境(Hadoop、SGE、MPI)上运行,并能解决超过 …

    Missing:
    • documentation
    Must include: